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Abstract

This paper presents a perturbation and ®nite±boundary element combined approach for solving the problem of

linear creep. Compared with the conventional incremental method, the ®eld variables, without assumptions of
remaining constant or varying linearly with time within a discretised time interval, can be described more precisely.
The recursive formulae of perturbation for boundary±®nite elements are constructed with the consideration of

reinforcement. Numerical veri®cation of the approach proposed gives good correlation against analytic solutions.
This encourages the extension of the work. # 2000 Elsevier Science Ltd. All rights reserved.
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Nomenclature

Ar cross-section area of reinforcement
a0, a1, a2 constant coe�cients
b0 ,b1 ,b2 constant coe�cients
Bi vector of body force
Bm
i coe�cient vector of Bi

fBg vector of body force
fBgm coe�cient vector of fBg
c1, c2, c3 constant coe�cients
cm,mÿl constant coe�cient
C�t� known function
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�D� constant matrix
� �D � constant matrix
Dm,mÿ1 constant coe�cient
E Young's modulus
Er elastic modulus of reinforcement
G shear modulus
[G ] coe�cient matrix
[H ] coe�cient matrix
� �H � matrix of di�erential operators
[K ] sti�ness matrix
L12, L23 segment length of reinforcement
m expanding order of perturbation
ni direction cosine
[N ] matrix of shape function
pi vector of traction
pm
i coe�cient vector of pi

Åp i prescribed pi on the boundary
Åpm
i coe�cient vector of Åp i

p�i weighted function
p�jk weighted function
fpg vector of traction on the boundary
fpgm coe�cient vector of fpg
f ÅPBgm coe�cient vector of node point traction
f ÅPFgm coe�cient vector of node point load
r distance between source and ®eld point
s perturbation variable
t time
t0 starting point of time
T size of time interval
ui vector of displacement
um
i the coe�cient vector of ui

fug vector of displacement
fugm coe�cient vector of fug
Åu i prescribed ui on the boundary
Åum
i coe�cient vector of Åu i

u�i weighted function
u�ik weighted function
f ÅU g vector of node point displacement
f ÅU gm coe�cient vector of f ÅU g
f ÅU Bgm coe�cient vector of node point displacement
f ÅU Fg vector of node point displacement
f ÅU Fgm coe�cient vector of node point displacement
u1, u2, u3, u1, u2, u3 displacement at end points of reinforcement
u1L, u

2
L displacements at end points of reinforcement

xi coordinate index
Mfeeegg vector of strain
eeeij strain tensor
eeemij coe�cient tensor of strain
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1. Introduction

Creep analysis plays an important role in practical engineering. One of the relevant issues, for
instance, is the safe operation of concrete structures and structures built in the rock with the
consideration of long-term creep deformation (see e.g. Ponter et al., 1981; Wang, 1984).

Due to the complexity of creep constitutive relations, inhomogeneity of media, as well as complex
geometric shapes of structures, the solutions of creep problems are di�cult to obtain analytically for
most cases and computer based numerical techniques are inevitably required.

A perturbation and ®nite±boundary element combined technique is, therefore, developed in this paper
for solving the linear creep problems. The advantages of this combination are the convenience of
simultaneous discrete computing in the space and time domains and the capability of dealing with not
only a single creep body but also two or more coupled creep bodies, which have di�erent ages and
arbitrary geometric shapes. Also, since the assumption (see e.g. Ouyang, 1989; Zeinkiewicz, 1975; Zhu,
1983) in conventional incremental computation that variables remain constant or change linearly in a
divided time interval is not adopted, the variation of variables in the time domain can be described
more precisely. Previous examples of using ®nite element±perturbation algorithms for the solution of
non-linear problems have been presented in the literature (see e.g. Xie, 1983, 1984; Yang, 1996; Yokoo
et al., 1976).

A number of numerical tests, considering time dependent boundary conditions, coupled e�ect of
temperature and creep, reinforced structures and coupled creep bodies with di�erent ages, etc., were
implemented to verify the correctness of the model proposed in terms of comparison with analytical
solutions.

2. Constitutive equation and perturbation formulae in the problem of linear creep

A number of engineering materials, such as concrete, rock, etc., can be described by the linear creep
theory (see e.g. Arutyunyan, 1961; Christensen, 1982), in which, the constitutive relation can be
expressed in an integral form

eeer strain of reinforcement
eeemr coe�cient of eeer

fsssg vector of stress
sssij stress tensor
sssmij coe�cient tensor of stress
sssr stress of reinforcement
sssmr coe�cient of sssr

G boundary of a domain
m Poisson's ratio
g material constant
t0 initial age of material
y12, y23 angles between reinforcement and X-axis
d�t, t� kernel function of creep
j�t, t� known function
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feeeg � �D�
(
fsssg=Eÿ

�t
t0

�
sss�t�	 @

@t
d�t, t� dt

)
�1�

where d�t, t� � 1=E�t� � j�t��1ÿ eÿg�tÿt�� ÿ C�t�, denoting the kernel function of creep, t0 refers to the
age of materials.

Eqn (1) can be converted into a di�erential form, facilitating the implementation of perturbation.
Taking time derivative of ®rst- and second-orders of eqn (1) can yield

feeeg 0� �D�
(
fsssg 0=E�t� � fsssg

�
gj�t� � C 0�t��ÿ �t

t0

�
sss�t�	geÿg�tÿt�

�
j 0�t� � gj 0�t�� dt

)
�2�

feeeg 00�gfeeeg 0� �D�
n
fsssg 00=E�t� �

�
gj�t� � C 0�t� � g=E�t� ÿ E 0�t�=E 2�t�

�
fsssg 0�

�
C 00�t� � gC 0�t��fsssgo �3�

where feeeg and fsssg denote the vectors of strain and stress, respectively; E�t� is the Young's modulus, j�t�
and C�t� are the known functions; g represents a material constant; �D� is a constant matrix. For the
problem of plane stress, �D� can be written as

�D� �

2664
1 ÿm 0

ÿm 1 0

0 0 2�1� m�

3775
For the problem of plane strain, [D ] becomes

�D� �

2664
ÿ
1ÿ m2

�
ÿm�1ÿ m� 0

ÿm�1ÿ m�
ÿ
1ÿ m2

�
0

0 0 2�1� m�

3775
where m is the Poisson ratio.

Eqn (3), converted from eqn (1), represents the constitutive relation of creep in a di�erential form.
In order to describe the variation of variables in the time domain more precisely, a perturbation

procedure is introduced, in which variables are expanded in the term of s de®ned as

s � �tÿ t0�=T
where t0 is an arbitrary starting point of time, T represents the size of a time interval. The relation of
di�erentials between s and t can be expressed as

d

dt
� 1

T

d

ds

d2

dt2
� 1

T 2

d2

ds2

Expanding the vectors of stress and strain in a discretised time interval can yield

feeeg � Sfeeegmsm �4�
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fsssg � Sfsssgmsm �5�
where feeegm and fsssgm denote the coe�cient vectors of strain and stress, respectively, superscript m refers
to the order of perturbation.

In a discretised time interval, we can assume

E � a0 � a1s� a2s
2 �6�

j � b0 � b1s� b2s
2 �7�

C � c1 � c2s� c3s
2 �8�

where a0, a1, a2, b0, b1, b2, c1, c2 and c3 are the constant coe�cients associated with material properties.
Substituting eqns (4)±(8) for eqns (1) and (2) and letting t � t0 can yield

feeeg0� �D�=a0fsssg0 �9�

feeeg1� �D�
�
fsssg1=a0 � T�gb0 � c1=T�fsssg0

	
�10�

A perturbation based recursive constitutive relation can be obtained by a substitution of eqns (4)±(8) for
eqn (3), having the form

fsssg � � �D �
(
feeegm�

Xm
k�1

cm,mÿkfeeegmÿk
)

�11�

where cm,mÿk can be determined by material parameters

� �D � � a0�D�ÿ1

A recursive relation between coe�cient vectors of strain and stress is speci®ed by eqn (11).

3. Perturbation formulae of boundary element method

In the derivation of perturbation±boundary element based formulae, an expansion similar to Section 2
needs to be implemented to governing equations speci®ed by

sssij,j � Bi � 0 �equilibrium relation� �12�

eeeij � �ui,j � uj,i �=2 �strain±displacement relation� �13�

ui � Åu i �displacement boundary condition� on Gu �14�

pi � Åp i �stress boundary condition� on Gs �15�
where sssij and eeeij denote the stress and strain tensors, respectively; ui is the vector of displacement; pi

represents the vector of traction; Åu i, Åp i are the prescribed values of ui and pi on the boundaries.
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G � Gu � Gs represents the boundary of a domain, subscript u and s refer to the displacement and
stress, respectively.

The variables in eqns (12)±(15) can be expanded in the term of s, having the form

eeeij � SSSeeemij s
m �16�

sssij � SSSsssm
ij s

m �17�

Bi � SSSBm
i s

m �18�

ui � SSSum
i s

m �19�

pi � SSSpm
i s

m �20�

Åui � SSS Åum
i s

m �21�

Åpi � SSS Åpm
i s

m �22�

where eeemij and sssmij represent the coe�cient tensors of strain and stress; pmi , Åpm
i , um

i and Åum
i are the

coe�cient vectors of traction and displacement, respectively.
Substituting eqns (16)±(22) for eqns (12)±(15) can yield a group of perturbation based governing

equations, having the form

sssmij,j � Bm
i � 0 �23�

eeemij �
ÿ
um
i,j � um

j,i

�
=2 �24�

um
i � Åum on Gu �25�

pm
i � Åpm

i on Gs �26�

Employing the weighting technique to eqns (23), (25) and (26) then yields�
u

ÿ
sssmij,j � Bm

i

�
u�i du�

�
Gu

ÿ
um
i ÿ Åum

i

�
p�i dGÿ

�
Gs

ÿ
pm
i ÿ Åpm

i

�
u�i dG � 0 �27�

where u�i and p�i denote weighting functions.
By utilizing the theorem of integration by part and the relation of eqn (11) in the tensor form, the

®rst term in eqn (27), if Bi � 0, can be written as�
u
sssmij,ju

�
i du �

�
G

pm
i u
�
i dGÿ

�
G

ÿ
um
i � Scm,mÿlumÿl

i

�
p�i dG�

�
u

ÿ
um
i � Scm,mÿlumÿl

i

�
sssij,j du �28�

Substituting eqn (28) for eqn (27) then yields
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�
G

pm
i u

m
i duÿ

�
G

um
i p
�
i dG�

�
u
um
i sss
�
ij,j du �

�
G
p�i Scm,mÿlumÿl

i dGÿ
�
u
sss�ij,jScm,mÿlumÿl

i du �29�

For the 2-D problems, the weighting functions can be speci®ed by

u�lk �
1

8pG�1ÿ m�
�
�3ÿ 4m�ln1

r
dlk � @r

@xl

@r

@xk

�
�30�

p�lk �
1

4p�1ÿ m�r
�
@r

@n

�
�1ÿ 2m�dlk � 2

@r

@xl

@r

@xk

�
ÿ �1ÿ 2m�

�
@r

@xl
nk ÿ @r

@xk
nl

��
�31�

where G represents the shear modulus, r denotes the distance between source point and ®eld points, ni
refers to the direction cosines of the outward normal to the boundary. u�lk and p�lk represent the
weighting functions of displacement and traction, respectively.

Substituting eqns (30) and (31) for eqn (29) and discretising integration on the boundary (see e.g.
Brebbia, 1980) then yields

�G�
�

ÅPB

	m� �H��� ÅU B

	m�Scm,mÿl
�

ÅU B

	mÿl� �32�

where f ÅPBgm and f ÅU Bgm represent the coe�cient vectors of nodal point traction and displacement on the
boundary, �G � and �H � are the coe�cient matrices, subscript `B' refers to the boundary element.

Eqn (32) represents a perturbation±boundary element based recursive formula.

3.1. Numerical example

The time-dependent displacement of a ring subjected to an internal uniform pressure in the in®nite
viscoelastic medium, as shown in Fig. 1, is investigated. The computing parameters are as follows: a =
300 cm; g = 3.0093 � 10ÿ7/s; j = 0.0005 cm2/kg; and E = 2 � 105 kg/cm2. In this example, both time-

Fig. 1. A ring in the in®nite viscoelastic medium.
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dependent and independent boundary conditions are taken into account via internal pressure p shown in
Fig. 1. Numerical comparison are exhibited in Tables 1 and 2 where subscript `m' refers to the minimum
size of the time step, `�' denotes analytical solutions and `��' is given by the present paper.

4. Perturbation formulae of ®nite element

Similar to Section 3, a perturbation procedure is also required to be implemented to governing
equations. Expansion starts from eqn (12) in a weak form on the basis of the virtual displacement
principle, having the form�

u
dfegTfsssg du �

�
u
dfugTfBg du�

�
Gs

dfugTfpg dG �33�

where dfeeeg and dfug represent the vectors of virtual strain and displacement; fBg and fpg represent the
vectors of body force and traction, respectively and can be expanded in the term of s, having the form

Table 1

Solution of displacement (r = a, p = 1000 kg/

cm2, m = 3, Tm � 5 days)

t (day) u � (cm) u �� (cm)

1 0.05081 0.049813

5 0.18199 0.17841

10 0.33156 0.32502

15 0.4622 0.45702

20 0.58746 0.57587

25 0.69661 0.68286

30 0.79489 0.77919

35 0.88336 0.86593

40 0.96302 0.94401

50 1.10993 1.07761

60 1.20978 1.1859

Table 2

Solution of displacement (r = a, p = (1000 ÿ
t ) kg/cm2, m = 3, Tm � 5 days)

t (day) u � (cm) u �� (cm)

1 0.050474 0.049478

5 0.18149 0.17791

10 0.32977 0.32326

15 0.46243 0.4566

20 0.58102 0.56956

25 0.68696 0.67341

30 0.78149 0.76608

35 0.86578 0.84869

40 0.94081 0.92225

50 1.06677 1.04571

60 1.16567 1.14267
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fBg � SfBgmsm �34�

fpg � Sfpgmsm �35�
The vector of displacement {u } can also be expanded as

fug � Sfugmsm �36�
where fBgm, fpgm and fugm represent coe�cient vectors of {B }, {p } and {u }, respectively.

Substituting eqns (5), (34) and (35) for eqn (33) can yield�
u
dfeeegTfsssgm du �

�
u
dfugTfBgm du�

�
G
dfugTfpgm dG �37�

By utilizing eqns (11) and (13) in the form of a vector, i.e. feeeg � � �H �fug, eqn (37) can be further
described as�

u
dfeeegTfsssgm du �

�
dfeeegT� �D �

ÿ
feeegm�Scm,mÿkfeeegmÿk

�
du

�
�
dfeeegT� �D �� �H �

ÿ
fugm�Scm,mÿkfugmÿk

�
du

�
�
u
dfugTfBgm du�

�
G
dfugTfpgm dG �38�

where � �H � is a matrix of di�erential operators, which, for 2-D problems, can be de®ned as

� �H � �

2664
@=@x 0

0 @=@y

@=@y @=@x

3775 �39�

Domain u can be discretised into a number of elements where fugm is represented by

fugm� �N�
�

ÅU
	m �40�

where [N ] refers to a matrix of shape functions, f ÅU gm denotes the value of fugm at node points of an
element.

Substituting eqn (40) for eqn (38) and assembling over all the elements can yield (see e.g. Zeinkiewicz,
1971)

�K�
�

ÅU F

	m� � ÅPF

	mÿ�K�Scm,mÿk
�

ÅU F

	mÿk �41�
where f ÅU Fgm refers to a global coe�cient vector of displacement on node points, [K ] denotes a `sti�ness'
matrix and f ÅPFgm is a global coe�cient vector of equivalent node point loads, converted by

f ÅP gm� S
�
u
�N�TfBgm du� S

�
Gs

�N�Tfpgm dG �42�

subscript `F' refers to `Finite element'.
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4.1. Numerical example

This example, with respect to the creep of a concrete beam shown in Fig. 2, is given to describe a
decrease of stress caused by a un-uniform temperature ®eld, varying linearly along the height of the
beam. The coupled e�ect of temperature and creep on the stress is analysed by considering temperature
strain as an initial one. The computing parameters are listed as follows:

T1 � 158C, T2 � ÿ58C;
E � 200,000 kg=cm2;

t0 � 14 days;

g � 3:0093� 10ÿ7=s;
j�t� � �A1=t� C0�;
C0 � 0:5� 10ÿ5 cm2=kg, A1 � 4:1645 cm2=kg s, L � 200 cm, h � 20:0 cm:

The numerical comparison is exhibited in Table 3 in terms of stress at point A shown in Fig. 2.

5. The sti�ness matrix of reinforcement

Reinforcement is widely used in many aspects of practical engineering and has to be considered in the
creep analysis since it often plays an important role a�ecting the creep behavior of matrix materials. In
this section, a parent element based sti�ness matrix of reinforcement is constructed for the use of
perturbation based computation.

An eight-node isoparametric element is considered as a parent element where a length of
reinforcement locates on it. The following assumptions are adopted in the derivation.

Fig. 2. A concrete beam.

Table 3

The stress variation with time (at point A, m = 3, Tm = 5)

t (day) 14 20 28 45 90 150

(s(t )/s(t0))
� 1.0 0.6963 0.4731 0.2922 0.2281 0.2227

s(t )/s(t0))
�� 0.479 0.297 0.233 0.233

Where `��' refers to the solutions obtained by Arutyunyan (1961), `�' represents those given by the present paper.
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1. There is no relative sliding between the parent element and the reinforcement.
2. The strain of reinforcement is within the elastic limit.
3. Only axial stress of reinforcement is considered.
4. The reinforcement is located on a side of the parent element. In the derivation it is assumed to be on

the side 1±2±3.

The reinforcement, is divided into two parts, from node points 1±2 and 2±3, respectively, as shown in
Fig. 3. They are, ®rstly considered as linear elements, respectively, then ®xed together.

The displacement of nodes 1 and 2 along the reinforcement can be described as

uL1 � u1 cos y12 � u1 sin y12 �43�

uL2 � u2cos y12 � u2sin y12 �44�
The strain in segment 1±2 can be written as

eeer12 �
�ÿ cos y12,ÿ sin y12, cos y12; sin y12

	
2666664
u1

u1

u2

u2

3777775=L12 �45�

where L12 is the length of segment 1±2.
A similar formula can also be obtained on segment 2±3, having the form

eeer23 �
�ÿ cos y23,ÿ sin y23, cos y23; sin y23

	
2666664
u2

u2

u3

u3

3777775=L23 �46�

where u1, u2, u3, u1, u2 and u3 represent the displacements of node points 1±3 under the global
coordinate system, u1L and u2L denote the displacements of node points 1 and 2 under the local
coordinate system, L23 is the length of segment 2±3, and subscript `r' refers to reinforcement.

Based on the forenamed assumption, the constitutive relation of reinforcement can be written as

Fig. 3. An element with reinforcement.
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sssr � Ereeer �47�
where Er is the elastic modulus of reinforcement, sssr and eeer representing the stress and strain of a
reinforcement, respectively, can be expanded in the terms of s, having the form

sssr � Ssssmr s
m �48�

eeer � Semr s
m �49�

Substituting eqns (48) and (49) for eqn (47) then yields

sssmr � Ereeemr �50�
The contribution of a reinforcement can be considered by adding a term

�
Ardeeersssr dL into eqn (33),

which will lead to an additional term
�
Ardeeersssmr dL in eqn (37) where deeer represents the virtual strain of

reinforcement and Ar refers to the cross-section area of reinforcement.
By substituting sssmr with the coe�cient vector of displacement at node points in virtue of eqns (45),

(46) and (50), the contribution of reinforcements can appear in eqn (41) in the term of f ÅU Fg and a
reinforcement related additional sti�ness matrix will be generated and assembled into [K ]. At the
element level, sti�ness matrices of segments 1±2 and 2±3 can be expressed as2666664

ÿcos y12

ÿsin y12

cos y12

sin y12

3777775
�ÿ cos y12, ÿ sin y12, cos y12, sin y12

	
ErAr=L12 �51�

2666664
ÿcos y23

ÿsin y23

cos y23

sin y23

3777775
�ÿ cos y23, ÿ sin y23, cos y23, sin y23

	
ErAr=L12 �52�

Fig. 4. A concrete cylinder with reinforcement.
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5.1. Numerical example

This example is employed to verify the correctness of the reinforcement element derived above, in
which a numerical solution for a reinforced concrete cylinder subjected to an internal uniform pressure,
as shown in Fig. 4, is given in Table 4. Computing parameters are as follows:

a � 200 cm, b � 260 cm, Ec � 2� 105 kg=cm2, Er � 2� 106 kg=cm2, t0 � 28 days;

g � 3:0093� 10ÿ7=s, j�t� � �A1=t� C0 �, C0 � 0:9� 10ÿ5 cm2=kg, A1 � 4:1645 cm,2=kg s:

Subscript `c' refers to concrete.

6. Boundary and ®nite element coupled perturbation formulae

The idea of combining both BEM and FEM with perturbation techniques is of considerable interest
in some practical problems. In the numerical analysis of an underground tunnel, for example, FEM can
be employed in the near-®eld, facilitating dealing with reinforcement and reinforced concrete lining, etc.,
far®eld analysis can be carried out by BEF to reduce the number of unknowns. In this section, BEM±
FEM coupled, recursive perturbation formulae are derived.

Assume that there are two regions, one that can include reinforcements in it, is to be investigated by
FEM and another one by BEM. The variables on the interface of these two regions are described with
superscript `I'. Superscript and subscript `F' and `B' are employed to denote the internal variables in
FEM and BEM regions, respectively.

By utilizing the conditions of equilibrium and compatibility on the interface, reorganizing eqns (32)
and (41) can yield

ÿ
ÿH I,ÿHB, G

I
�0BB@

UI

UB

PI

1CCA
m

� ÿGBPm
B �

ÿ
H I, HB

�
SDm,mÿk

 
UI

UB

!mÿk
�53�

and

ÿ
K I, KF,M

�0BB@
UI

UF

PI

1CCA
m

� ÅP
m
F �

�
K I 0 , K 0F

�
Scm,mÿk

 
UI

UF

!mÿk
�54�

where GB, G
I, H I, HB, K

I, KF, K
I 0 and K 0F are known sub-matrices; �UI�m, �UF�m, �UB�m, �PI�m, ÅP

m

F and

Table 4

The stress variation in reinforcement with time (m � 3, Tm � 5 days)

t (day) �s�t�=s�t0�� (Arutyunyan, 1961) �s�t�=s�t0��

170 2.707 2.73
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Pm
B represent relevant sub-coe�cient vectors. M denotes a matrix generated in transforming distributive

traction on the interface into FEM required `equivalent node point lodes'. Dm,mÿk and Cm,mÿk here refer
to the materials related coe�cients in BE and FE regions, respectively.

Eqns (53) and (54) represent BE±FE coupled recursive perturbation formulae and needs to be solved
simultaneously. For a special case where�
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Substitution of eqn (55) for eqn (54) then yields
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6.1. Numerical example

(1) A coupled BE-FE perturbation scheme is implemented in this example to investigate the variations
of displacement and stress in a reinforced concrete lining shown in Fig. 5, which is subjected to a
uniform radial pressure and locates in an in®nite elastic medium. BEM and FEM are employed in the
areas of in®nite elastic medium and reinforced concrete lining, respectively. The solutions, as exhibited
in Table 5, are compared with those given by Wu (1955) and the FE perturbation technique presented
in Section 3. The computing parameters are de®ned as:

Fig. 5. A concrete cylinder with reinforcement in the in®nite elastic medium.
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a � 200 cm, b � 300 cm, Ec � 0:39� 105 kg=cm2, Er � 2� 106 kg=cm2, t0 � 180 days;

g � 3:472� 10ÿ7=s, p � 10 kg=cm2, Ge � 0:7� 105 kg=cm2, d � 0:6 cm, mc � 0:3, me � 0:3;

j�t� �
�
4450=

ÿ
t2 � 3030

�
� 0:28

�
� 10 cm2=kg;

where subscripts `c' and `e' refer to the concrete and elastic medium, respectively.
By comparison with the BE±FE coupled perturbation scheme, the other two solutions are

numerically, a little smaller. The reason for this is that some assumptions were adopted by Wu (1955)
and a simpli®ed ®xed boundary condition is used in FE analysis, simulating an in®nite domain by a
®nite one.

(2) An excavation e�ect is simulated in this example, in which a concrete lining, as shown in Fig. 6. is
assumed to be attached on the in®nite viscoelastic rock ®ve days after excavating, p in Fig. 6 refers to
the excavating stress. FEM and BEM are employed in the areas of concrete lining and in®nite rock,
respectively. A comparison of displacement solution at r=a is presented in Tables 6 and 7 where
subscript `u' refers to `uniform size of time step'. The creep kernel functions of concrete and rock are
described as:

dc�t, t� �
ÿ
0:5� 10ÿ5 � 0:5� 10ÿ5

ÿ
1ÿ eÿ2:8935�10

ÿ7�tÿt�
��

cm2=kg;

dR�t, t� �
ÿ
10ÿ4 � 10ÿ4

ÿ
1ÿ eÿ2:3148�10

ÿ7�tÿt�
��

cm2=kg:

Other computing parameters are listed below

a � 500 cm, b � 470 cm, t0 � 40 days, mc � 0:3, mR � 0:3, p � ÿ10 kg=cm2:

Subscript `R' refers to rock.
Two examples in this section show the capability of the presented approach to deal with coupled

Fig. 6. A concrete lining in the in®nite viscoelastic rock.

Table 5

The variations of stress and displacement with time �m � 3, Tm � 5 days�

t (day) u�t�=u�t0� sssr�t�=sss�t0�

Wu (1955) FEM FEM±BEM Wu (1955) FEM FEM±BEM

180 1 1 1 1 1 1

210 1.2683 1.2930 1.3045 1.267 1.2932 1.3046

330 1.405 1.438 1.4747 1.42 1.4381 1.4751
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creep bodies. It is again observed in example 2 that the FE perturbation based solution is less accurate
than that of the BE±FE coupled perturbation scheme due to the reason mentioned above.

7. Discussion and conclusion

The size of the time step and the number of the perturbation order are two major issues relevant to
the computing in the time domain. At the initial stage where creep usually develops rapidly, either a
relatively smaller size for a ®xed number of the perturbation order, or a relatively higher number for
speci®ed sizes of time steps, needs to be adopted. In this paper, di�erent sizes of time steps are
employed in the whole computation of time domain with a speci®ed number of the perturbation order.
As an extension of the present work, a perturbation based self-adaptive algorithm in the time domain is
being developed by the author for the solution of the coupled heat and the moisture transfer problem,
in which the order of perturbation will be automatically determined by a certain sort of convergence
criteria.

In the space domain, one of the FEM, BEM and coupled BEM±FEM, with respect to practical cases,
can be chosen combining with the perturbation scheme to describe the spatial variation of variables.
FEM, for instance, is more suitable for the case, in which structures are inhomogeneous and include
reinforcements in it.

In the recursive computation, the system matrix needs to be generated just one time in each of the
time steps due to the time dependent material properties and only `one step' coe�cient vectors of
variables at node points are required to be kept in storage.

The principle objective of this paper is to present a new approach for the solution of linear creep
problems, in which a conventional assumption that variables remain constant or vary linearly within a
discretised time interval is not adopted and the variation of variables in the time domain can, therefore,
be described more precisely by exploiting the perturbation technique.

Table 7

The variation of displacement (r � a, m � 3)

t (day) Pan (1980) FEM±BEM (Tu = 10 days) FEM±BEM (Tu = 5 days)

40 0 0 0

50 0.0734 0.07509 0.07392

60 0.1153 0.1222 0.1168

70 0.1406 0.1533 0.1442

80 0.1604 0.1747 0.1631

Table 6

The variation of displacement (r = a ) with time m � 4, Tu � 10 days

t (day) Pan (1980) FEM FEM±BEM

40 0 0 0

50 0.0734 0.0707 0.07392

60 0.1153 0.1092 0.1150

70 0.1406 0.1333 0.1413

80 0.1604 0.1500 0.1598
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With the consideration of reinforcement, three kinds of perturbation based recursive formulae are
derived, providing considerable ¯exibility to solve practical creep problems. Various numerical examples
have been computed to verify the correctness of the methods presented. Comparison of numerical
results with analytical solutions yields good correlation.

The overall approach presented has proved to be amenable to simultaneous discrete computing in the
space and time domains and is capable of (i) describing the variation of variables which are not assumed
to remain constant and vary linearly in a discretised time interval, (ii) dealing with reinforcement, time-
dependent boundary conditions, etc., (iii) simulating coupled creep bodies with di�erent ages. It is,
therefore, proposed as a useful tool for solving the creep problems.
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